A Genetic Algorithm Discovers Particle-Based Computation in Cellular Automata
نویسندگان
چکیده
How does evolution produce sophisticated emergent computation in systems composed of simple components limited to local interactions? To model such a process, we used a genetic algorithm (GA) to evolve cellular automata to perform a computational task requiring globally-coordinated information processing. On most runs a class of relatively unsophisticated strategies was evolved, but on a subset of runs a number of quite sophisticated strategies was discovered. We analyze the emergent logic underlying these strategies in terms of information processing performed by “particles” in space-time, and we describe in detail the generational progression of the GA evolution of these strategies. Our analysis is a preliminary step in understanding the general mechanisms by which sophisticated emergent computational capabilities can be automatically produced in decentralized multiprocessor systems.
منابع مشابه
Robot Path Planning Using Cellular Automata and Genetic Algorithm
In path planning Problems, a complete description of robot geometry, environments and obstacle are presented; the main goal is routing, moving from source to destination, without dealing with obstacles. Also, the existing route should be optimal. The definition of optimality in routing is the same as minimizing the route, in other words, the best possible route to reach the destination. In most...
متن کاملResearch of Complex Forms in Cellular Automata by Evolutionary Algorithms
This paper presents an evolutionary approach for the search for new complex cellular automata. Two evolutionary algorithms are used: the first one discovers rules supporting gliders and periodic patterns, and the second one discovers glider guns in cellular automata. An automaton allowing us to simulate AND and NOT gates is discovered. The results are a step toward the general simulation of Boo...
متن کاملImproved Frog Leaping Algorithm Using Cellular Learning Automata
In this paper, a new algorithm which is the result of the combination of cellular learning automata and frog leap algorithm (SFLA) is proposed for optimization in continuous, static environments.At the proposed algorithm, each memeplex of frogs is placed in a cell of cellular learning automata. Learning automata in each cell acts as the brain of memeplex, and will determine the strategy of moti...
متن کاملResearch of a Cellular Automaton Simulating Logic Gates by Evolutionary Algorithms
This paper presents a method of using genetic programming to seek new cellular automata that perform computational tasks. Two genetic algorithms are used : the first one discovers a rule supporting gliders and the second one modifies this rule in such a way that some components appear allowing it to simulate logic gates. The results show that the genetic programming is a promising tool for the ...
متن کاملOptimization of Quantum Cellular Automata Circuits by Genetic Algorithm
Quantum cellular automata (QCA) enables performing arithmetic and logic operations at the molecular scale. This nanotechnology promises high device density, low power consumption and high computational power. Unlike the CMOS technology where the ON and OFF states of the transistors represent binary information, in QCA, data is represented by the charge configuration. The primary and basic devic...
متن کامل